lycée IBN ROCHD 2021-2022

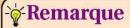
Nombres complexes

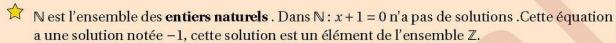
prof:Maatallah

2021/2022

Classe: 4Tech

INTRODUCTION ET DEFINITION





- \mathbb{Z} est l'ensemble des **entiers relatifs**. Dans \mathbb{Z} : 2x = 1 n'a pas de solutions. Cette équation a une solution notée : $\frac{1}{2}$, cette solution est un élément de l'ensemble \mathbb{Q} .
- \mathbb{Q} est l'ensemble des **nombres rationnels** de la forme $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{Z}^*$. Dans $\mathbb{Q}: x^2 = 2$ n'a pas de solutions .L'équation a deux solutions notées $\sqrt{2}$ et $-\sqrt{2}$, éléments de l'ensemble \mathbb{R} .
- \mathbb{R} est l'ensemble des **nombres réels** .Dans \mathbb{R} : $x^2 = -1$ n'a pas de solutions. L'équation a deux solutions imaginaires notées i et -i, de l'ensemble \mathbb{C} .
- \curvearrowright C est l'ensemble des **nombres complexes** de la forme **a+ib** avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$.
- \curvearrowright \mathbb{C} contient \mathbb{R} . On a donc : $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

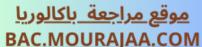
- Définition

- Il existe un ensemble , noté \mathbb{C} , appelé ensemble des nombres complexes contenant l'élément i , tel que $i^2=-1$.
- Tout nombre complexe z s'écrit d'une manière unique sous la forme algébrique suivante : z=a+ib ou a et b sont des réels a s'appelle la partie réelle de z .On la note a=Re(z) et b s'appelle la partie imaginaire de z .On la note b=Im(z)
- 3 L'écriture z=a+ib est applée forme algébrique de z.
 - Si $b = 0 \Leftrightarrow Im(z) = 0$, on a : z = a, z est un réel.
 - Si $a = 0 \Leftrightarrow Re(z) = 0$, on a: z = ib, on dit que z est un **imaginaire pur** $(z \in i\mathbb{R})$

- Propriétés

Soit z=a+ib et z'=a'+ib' alors:

- $1 z = z' \Leftrightarrow a = a' \text{ et } b = b'$
- $z = 0 \Leftrightarrow a = 0 \text{ et } b = 0$



Exercice n 1

1 Déterminer la partie réelle et la partie imaginaire de chaque nombre ci-dessous.

$$z_1 = 2 + 5i - 3$$

$$z_2 = 1 + i$$

$$z_3 = -2$$

$$z_4 = -3i$$

Ecrire sous forme algébrique les nombres complexes suivants :

$$z_1 = 2 + 5i - (3 - 7i)$$

$$z_2 = (2+5i)(3-7i)$$
 $z_3 = (2+i)^2$.

$$z_3 = (2+i)$$

ponse

$$z_2 = (2+5i)(3-7i)$$

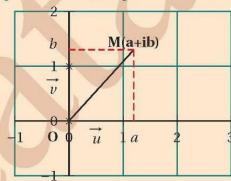
$$z_3 = (2+i)$$

Représentation géométrique d'un nombre complexe

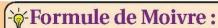
- Définition

Le plan P est rapporté à un repère orthonormé direct $(0; \vec{u}, \vec{v})$.

- \blacktriangleright Soit M(a,b) un point de P.On appelle **affixe** de M le nombre complexe noté aff(M)ou z_M tel que : $af f(M) = z_M = a + ib$
 - ► M(a,b) est **le point image** du nombre complexe z = a + ib.



- ► Le plan est appelé le plan complexe
 - L'axe des abscisses est appelé axe des réels.
 - L'axe des ordonnés est appelé axe des imaginaires purs.
- 3 Pour tous points $A(z_A)$ et $B(z_B)$ du plan complexe on a :
 - le vecteur \overrightarrow{AB} a pour affixe $aff(\overrightarrow{AB}) = Z_{\overrightarrow{AB}} = z_B z_A$
 - ► Le point *I*, milieu du segment [*AB*], a pour affixe $z_I = \frac{z_A + z_B}{2}$
- 4 Pour tous vecteurs u et v et tous réels α et β on a : $aff(\alpha \vec{u} + \beta \vec{v}) = \alpha aff(\vec{u}) + \beta aff(\vec{v})$



Pour tout réel θ et $n \in \mathbb{N}$ on a :

 $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$

Pour tout réel θ on a :

$$cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

 $\forall \alpha \in \mathbb{R} \text{ et } \forall \beta \in \mathbb{R}$

$$e^{i\alpha} + e^{i\beta} = e^{i\frac{\alpha + \beta}{2}} (e^{i\frac{\alpha - \beta}{2}} + e^{-i\frac{\alpha - \beta}{2}}) = 2\cos(\frac{\alpha - \beta}{2})e^{i\frac{\alpha + \beta}{2}}$$

$$e^{i\alpha} - e^{i\beta} = e^{i\frac{\alpha + \beta}{2}} (e^{i\frac{\alpha - \beta}{2}} - e^{-i\frac{\alpha - \beta}{2}}) = 2isin(\frac{\alpha - \beta}{2})e^{i\frac{\alpha + \beta}{2}}$$

Exercice n 10

1 Ecrire sous forme exponentielle chacun des complexes suivants :

$$(-1+i)^4$$
 $\frac{-1+i\sqrt{3}}{3-i\sqrt{3}}$ $\frac{(1+i)^4}{(3-i)^4}$

Soit $\theta \in]0,\pi[$, écrire sous forme exponentielle chacun des complexes suivants : $z_1=1+e^{i\theta}$ $z_2=1-e^{i\theta}$ $z_3=i+e^{i\theta}$ $z_4=i-e^{i\theta}$

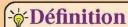
$$z_1 = 1 + e^{-s}$$

Réponse

$$=1-e^{i\theta} z_3=i$$

$$z_4 = i - e^{i\theta}$$

√ Vecteur , alignement et orthogonalité



Le plan P est rapporté à un R.O.N $(O; \overrightarrow{u}, \overrightarrow{v})$. Soit les points $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$. On a :

$$\widehat{\mathbf{u}, \mathbf{AB}} \equiv arg(z_B - z_A)[2\pi]$$

$$\widehat{\left(\overrightarrow{AB}, \overrightarrow{CD} \right)} \equiv arg(\frac{z_D - z_C}{z_B - z_A})[2\pi]$$

- Propriétés

Le plan P est rapporté à un R.O.N $(O; \overrightarrow{u}, \overrightarrow{v})$. Soit les points $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$. On a :

1 Les deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si et seulement si

$$arg(\frac{z_D - z_C}{z_B - z_A}) = k\pi$$
 $k \in \mathbb{Z}$ ou encore $\left(\frac{Z_D - Z_C}{Z_B - Z_A}\right) \in \mathbb{R}$

2 Les deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux si et seulement si

$$arg(\frac{z_D - z_C}{z_B - z_A}) = \frac{\pi}{2} + k\pi$$
 $k \in \mathbb{Z}$ ou encore
$$\left(\frac{z_D - z_C}{z_B - z_A}\right) \in i\mathbb{R}$$

- Corollaire

Le plan P est rapporté à un R.O.N $(O; \overrightarrow{u}, \overrightarrow{v})$. Soit les points $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$. On a :

1 les points A, B et C sont alignés si et seulement si $(\frac{z_C - z_A}{z_B - z_A}) \in i\mathbb{R}$

2 Les droites (AB) et (CD) sont parallèles si et seulement si $(\frac{z_D - z_C}{z_B - z_A}) \in \mathbb{R}$

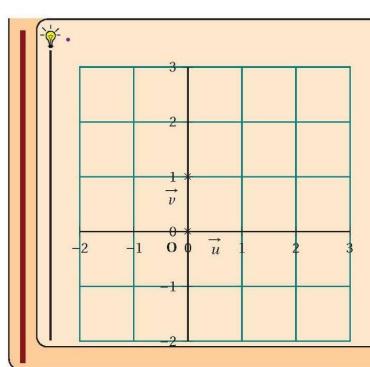
3 Les droites (AB) et (CD) sont perpendiculaires si et seulement si $(\frac{z_D - z_C}{z_B - z_A}) \in i\mathbb{R}$

Exercice n 11

Le plan P est rapporté à un repère orthonormé direct $(0; \overrightarrow{u}, \overrightarrow{v})$. Soit les points A(1-i), B(-2) et C(2+2i).

 ${\color{red} 1}$ Placer les points A , B et C . Montrer que le triangle ABC est isocèle et rectangle en A

2 Déterminer l'affixe du point D pour que *ABDC* soit un carré. **Réponse**



Racines carrées d'un nombre complexe

- Définition

Soit W un nombre complexe donné.

On appelle **racine carrée** de W tout nombre complexe z vérifiant $z^2 = W$

- Exemple

- 1 On a :9 = 3^2 alors 3 est une racine carrée de 9
- On a :-4 = $(2i)^2$ alors 2i est une racine carrée de -4
- On a : $(1-i)^2 = -2i$ alors 1-i est une racine carrée de -2i

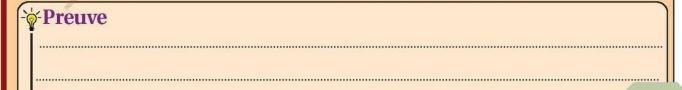
Théorème: (Méthode trigonométrique)

Soit $W = re^{i\theta}$ un nombre complexe non nul donné sous forme exponentielle .

L'équation : $z^2 = W$ admet dans \mathbb{C} deux solutions opposées :

$$z_1 = \sqrt{r}e^{i\frac{\theta}{2}}$$
 et $z_2 = -z_1 = -\sqrt{r}e^{i\frac{\theta}{2}}$

Les solutions z_1 et z_2 sont les racines carrées de W



Exercice Déterminer $z_1 = 3i$ Réponse	les racines c $z_2 = -i$	arrées de chac z ₃ = -5	cun des nombres $z_4 = \sqrt{3} + i$	complexes suiv $z_5 = -1 - i$	ants:
_					
_					
-					
-					

☆ (Méthode algébrique)

Exemple:

Résoudre dans Cl'équation : $z^2 = 3 + 4i$

Réponse

Réponse
On pose
$$z = x + iy$$
, on a : $z^2 = x^2 - y^2 + 2ixy$ et $|z^2| = x^2 + y^2$

$$z^2 = 3 + 4i \Leftrightarrow \begin{cases} x^2 + y^2 = |(3 + 4i)| \\ x^2 - y^2 = 3 \\ 2xy = 4 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 = 5 & \textbf{(1)} \\ x^2 - y^2 = 3 & \textbf{(2)} \\ xy = 2 & \textbf{(3)} \end{cases} \Leftrightarrow \begin{cases} 2x^2 = 8 & \textbf{(1)+(2)} \\ xy = 2 & \textbf{(3)} \end{cases}$$

$$\begin{cases} x^2 = 4 \\ xy = 2 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ et \\ y = 1 \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ et \\ y = -1 \end{cases} \Leftrightarrow \begin{cases} x = -2 - i = -z_1 \text{ sont les} \end{cases}$$

$$\begin{cases} x^2 = 4 \\ xy = 2 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ et \\ y = 1 \end{cases} \text{ ou } \begin{cases} x = -2 \\ et \\ y = -1 \end{cases} \text{ donc } z_1 = 2 + i \text{ et } z_2 = -2 - i = -z_1 \text{ sont less} \end{cases}$$

racines carrées de 3 + 4i

Théorème : (Méthode algébrique)

Soit W = a + ib un nombre complexe non nul et z = x + iy . L'équation :

$$z^{2} = W \Leftrightarrow \begin{cases} x^{2} + y^{2} = |W| \\ x^{2} - y^{2} = Re(W) \\ 2xy = Im(W) \end{cases} \Leftrightarrow \begin{cases} x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \\ x^{2} - y^{2} = a \\ 2xy = b \end{cases}$$

Exercice n 13

Déterminer les racines carrées de chacun des nombres complexes suivants :

$$z_1 = -3 + 4i$$
 $z_2 = -5 + 12i$ $z_3 = -21 - 20i$ $z_4 = 35 + 12i$ $z_5 = 40 - 42i$ **Réponse**

\rightarrow				

¿Equation du second degré à coefficients complexes

Soient a,b et c trois nombres complexes donnés tels que $a \neq 0$. L'équation $az^2 + bz + c = 0$ s'appelle équation du second degré à coefficients complexes.

Soit l'équation (E): $az^2 + bz + c = 0$ telle que $a \in \mathbb{C}^*$ et $b, c \in \mathbb{C}$. On pose $\Delta = b^2 - 4ac$, appelé discriminant de l'équation (E)

Si $\Delta \neq 0$, alors (E) admet dans $\mathbb C$ deux solutions distinctes:

$$\boxed{z_1 = \frac{-b + \delta}{2a}} \quad \text{et} \quad \boxed{z_2 = \frac{-b - \delta}{2a}}$$

ou δ est racine carrée de Δ $\Delta = b^2 - 4ac = (\delta)^2$

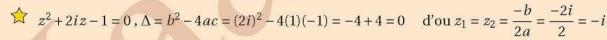
*Exemple

Résoudre dans C les équations suivantes :

$$(E_1): z^2 + 2iz - 1 - i = 0$$
 $(E_2): z^2 + 2iz - 1 = 0$ **Réponse**

$$z^{2} + 2iz - 1 - i = 0 , \quad \Delta = b^{2} - 4ac = (2i)^{2} - 4(1)(-1 - i) = -4 + 4 + 4i = 4i = 2(2i) = 2(1 + i)^{2} = [\sqrt{2}(1+i)]^{2} \quad \delta = [\sqrt{2}(1+i)] \text{ est une racine carrée de } \Delta, \text{ d'ou}$$

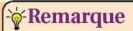
$$z_{1} = \frac{-b + \delta}{2a} = \frac{-2i + \sqrt{2}(1+i)}{2} \quad \text{et} \quad z_{2} = \frac{-b + \delta}{2a} = \frac{-2i - \sqrt{2}(1+i)}{2}$$



Exercice n 14

Résoudre dans Cles équations suivantes :

(E₁): $z^2 - (1+i)z + i = 0$ (E₂): $2z^2 + (1-3i)z - 1 - i = 0$ (E₃): $iz^2 - 2(1+i)z + 2 = 0$ Réponse



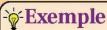
Soit l'équation $(E): az^2 + 2b'z + c = 0$ telle que $a \in \mathbb{C}^*$ et $b', c \in \mathbb{C}$. On pose $\Delta' = b'^2 - ac$ appelé **discriminant réduit** de l'équation (E)

$$\Rightarrow$$
 Si $\Delta' = 0$, alors (E) admet dans \mathbb{C} une solution double : $z_1 = z_2 = \frac{-b'}{a}$

$$ightharpoonup Si \Delta' \neq 0$$
, alors (E) admet dans $\mathbb C$ deux solutions distinctes :

$$z_1 = \frac{-b' + \delta'}{a} \quad \text{et} \quad z_2 = \frac{-b' - \delta'}{a}$$

ou
$$\delta'$$
 est racine carrée de Δ' $\Delta' = b'^2 - ac = (\delta')^2$



Résoudre dans C les équations suivantes :

$$(E_1): z^2 + 2iz - 1 - 2i = 0$$
 $(E_2): z^2 + 2z + 1 = 0$

Réponse

$$z^2 + 2iz - 1 - 2i = 0 \quad , \quad \Delta' = b'^2 - ac = (i)^2 - (1)(-1 - 2i) = -1 + 1 + 2i = 2i = (1 + i)^2 \quad \delta' = (1 + i)$$
 est une racine carrée de Δ' , d'ou $z_1 = \frac{-b' + \delta'}{a} = \frac{-i + (1 + i)}{1} = 1$ et
$$z_2 = \frac{-b' + \delta'}{a} = \frac{-i - (1 + i)}{1} = -1 - 2i$$

$$z^2 + 2z + 1 = 0$$
, $\Delta' = b'^2 - ac = (1)^2 - (1) = 0$ d'ou $z_1 = z_2 = \frac{-b'}{a} = \frac{-1}{1} = -1$

- Remarque

Soit l'équation (E) : $az^2 + bz + c = 0$ telle que $a \in \mathbb{C}^*$ et $b, c \in \mathbb{C}$

$$\Rightarrow$$
 Si $z_1 e t z_2$ sont les solutions de (E),: $az^2 + bz + c = a(z - z_1)(z - z_2)$

$$\Rightarrow$$
 Si $z_1 e t z_2$ sont les solutions de (E), $z_1 + z_2 = \frac{-b}{a}$ et $z_1 \cdot z_2 = \frac{c}{a}$

Si
$$a+b+c=0$$
, alors (E) admet dans \mathbb{C} deux solutions: $z_1=1etz_2=\frac{c}{a}$

Si
$$a-b+c=0$$
, alors (E) admet dans \mathbb{C} deux solutions : $z_1=-1$ et $z_2=\frac{-c}{a}$

Si
$$a, b$$
 et c sont trois réels $(a \neq 0)$ et si $\Delta < 0$, alors $\overline{z_2 = \overline{z_1}}$

Exercice n 1	5
--------------	---

Résoudre dans Cles équations suivantes :

$$(E_1): z^2 - (1+i)z - 2 - 2i = 0$$
 $(E_2): z^2 + z + 1 = 0$ $(E_3): z^2 - i\sqrt{3}z - 1 = 0$

$$(E_1): z^2 - (1+i)z - 2 - 2i = 0 (E_2): z^2 + z + 1 = 0 (E_3): z^2 - i\sqrt{3}z - 1 = 0 (E_4): z^2 + i(e^{i\theta} - 2)z + e^{i\theta} - 1 = 0, \theta \in]0, \pi[(E_5): z^2 - 2(i - \cos\theta)z - 2i\cos\theta = 0, \theta \in]0, \pi[$$

Réponse

 •	***************************************	 	***************************************	

Exercice n 16 (BAC Tech 2021 Session principale)

- 1 Ecrire $(1-i\sqrt{3})^2$ sous forme cartésienne.
 - 2 Résoudre dans l'ensemble C des nombres complexes l'équation :

$$2z^2 - 4i\sqrt{3}z - 5 + i\sqrt{3} = 0.$$

- II Dans le plan complexe rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives : $z_A = \frac{1+i\sqrt{3}}{2}$, $z_B = \frac{-1+3i\sqrt{3}}{2}$ et $z_C = -1+i\sqrt{3}$. On désigne par (C_1) le cercle de centre O et de rayon 1 et par (C_2) le cercle de centre O et de rayon 2 (figure 2 de l'annexe).
 - 1 Ecrire z_A et z_C sous forme exponentielle.
 - 2 a Montrer que le point A appartient à (C_1) et que le point C appartient à (C_2) .
 - b Montrer que le quadrilatére OABC est un parallélogramme.
 - C Construire les points A, B et C.
 - 3 Montrer que la droite (AC) est tangente à (C_1).
 - 4 On considère le point I d'affixe $z_I = 1$.
 - Δ_1 la perpendiculaire à la droite (AC) et passant par le point I
 - Δ_2 la paralléle à l'axe des abscisses passant par le point B.

 Δ_1 et Δ_2 se coupe en un point H d'affixe z_H

- Vérifier que $z_H = x + i \frac{3\sqrt{3}}{2}$ ou x est un nombre réel.
- b Montrer que $z_H 1 = re^{i\frac{\pi}{3}}$ ou r = IH.
- \Box En déduire que $z_H = \frac{5+3i\sqrt{3}}{2}$.
- Montrer que le triangle BIH est équilatéral.

Exercice n 2 Dans le plan complexe, on considre les points A(-1+2i), B(1-i) et C(3-2i)1 Placer les points A, B et C2 Déterminer l'affixe des vecteurs \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} , \overrightarrow{BC} et $\overrightarrow{3}$ \overrightarrow{AB} – \overrightarrow{CB} 3 Déterminer l'affixe du point D, sachant que ABCD est un parallélogramme 4 Déterminer l'affixe du centre du parallélogramme Réponse 0

Conjugué d'un nombre complexe

- Définition

Soit z = a + ib un nombre complexe, ou a et b sont des réels.

On appelle **conjugué** de z le nombre complexe $\overline{z} = \overline{a+ib} = a-ib$

<u>موقع مراجعة باكالوريا</u> BAC.MOURAJAA.COM

Exercice n 3

Déterminer les conjugués des nombres complexes suivants :

$$z_1 = 3 + i$$
 $z_2 = -1 - 2i$ $z_3 = -7$ $z_4 = -2i$

Réponse

→ Propriétés

Soit z un nombre complexe qui s'écrit sous la forme algébrique $z=a+i\,b$ alors on a :

- 1 Le conjugué de \overline{z} est évidemment : $\overline{\overline{z}} = z$
- $z + \overline{z} = 2a = 2Re(z)$ $z \overline{z} = 2ib = 2iIm(z)$
- 3 \Rightarrow z est réel \Leftrightarrow $Im(z) = 0 <math>\Leftrightarrow$ $z = \overline{z}$
 - \Rightarrow z est imaginaire pur \Leftrightarrow $Re(z) = 0 \Leftrightarrow z = -\overline{z}$
- 4 $z.\overline{z} = a^2 + b^2 = Re^2(z) + Im^2(z) \in \mathbb{R}_+$

Propriétés

Pour tous complexes z et z', on a:

$$\overline{z+z'}=\overline{z}+\overline{z'}$$
 , $\overline{z.z'}=\overline{z}.\overline{z'}$

 $z' \neq 0$ $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$ $\overline{z}^n = \left(\overline{z}\right)^n, n \in \mathbb{N}^*$

A Remarques

Le plan P est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- $oxed{1}$ Le point $M'(\overline{z})$ est le symétrique du point M(z) par rapport l'axe des abscisses .
- 2 Le point M''(-z) est le symétrique du point M(z) par rapport l'origine O du repère.
- 3 Toute droite(D) admet comme équation cartésienne : ax + by + c = 0, $(a, b) \neq (0, 0)$
- Une équation cartésienne du cercle (φ) de centre I(a,b) et de rayon R est : $(x-a)^2 + (y-b)^2 = R^2$
- 5 L'ensemble des points M(x, y) vérifiant l'équation :

 $x^2 + y^2 + ax + by + c = 0$ est un cercle de centre $I(\frac{-a}{2}, \frac{-b}{2})$ et de rayon $R = \sqrt{h}$ avec

$$h = \frac{a^2 + b^2}{4} - c > 0$$

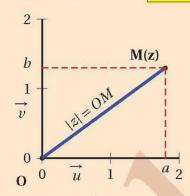
1	-6	Exercice n 4
		Déterminer la forme algébrique de chacun des nombres complexes suivants : $z_1 = \frac{2-i}{3+2i} \qquad z_2 = \frac{1}{1+i} \qquad z_3 = \frac{1}{i} \qquad z_4 = \frac{3+2i}{3-2i} \qquad z_5 = \frac{1+6i}{(1+i)^2}$
		Le plan P est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.
		A tout point M d'affixe z différent de i , on associe le point $M'(z')$ tel que $z' = \frac{z-1+i}{z-i}$.
		a Déterminer les coordonnées du point A' associé au point $A(1+2i)$.
		b Déterminer les coordonnées du point B auquel est associé le point $B'(0, -2)$.
		Déterminer l'ensemble des points $M(z)$ tels que z' est réel.
		Déterminer l'ensemble des points $M(z)$ tels que z' est imaginaire pur. Réponse
1	1	

Module d'un nombre complexe

Définition

On appelle **module** d'un nombre complexe z = a + ib avec $(a, b) \in \mathbb{R}^2$ le réel positif définie par : $|z| = \sqrt{a^2 + b^2} = \sqrt{z.\overline{z}}$

Graphiquement, si M est l'image de z , alors on a : $|z| = OM = \sqrt{a^2 + b^2}$



Pour tous points A et B d'affixes respectives z_A et z_B on a: $AB = |z_B - z_A|$

Exercice n 5

1 Dterminer le module des nombres complexes suivants : $z_4 = 4 - 3i$

 $z_2 = 1 + i$ $z_3 = -2i$ $z_1 = 2 + 5i$

2 Dans le plan complexe rapporté à un repère orthonormé direct $(0; \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives $z_A = 2 - 3i$ et $z_B = 5 - i$. Calculer les distances OA, OB et AB. En déduire la nature du triangle OAB.

Réponse

∀ Propriétés

Soit z et z' deux nombres complexes on a :

$$|z| = |\overline{z}| = |-z|$$

$$|z.z'| = |z|.|z'|$$

2 Si
$$z' \neq 0$$
 alors : $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$

$$\forall n \in \mathbb{N}: \quad |z^n| = |z|^n$$

$$|z| = \sqrt{z \cdot \overline{z}} \Leftrightarrow |z|^2 = b_{ac} N$$

-6-	Ex	er	cio	e	n	6
M				~		-

1 Déterminer le module de chacun des nombres complexes suivants :

$$z_1 = (2 + 5i)(1 - 3i)$$

$$z_2 = \frac{1-i}{-2+3i}$$

$$z_3 = (1 - 2i)^3$$

$$z_1 = (2+5i)(1-3i)$$
 $z_2 = \frac{1-i}{-2+3i}$ $z_3 = (1-2i)^3$ $z_4 = \frac{(1-i)^4}{(1+4i)(3-4i)}$

2 Dans le plan complexe rapporté à un repère orthonormé direct $(0; \overrightarrow{u}, \overrightarrow{v})$, déterminer l'ensemble des points M d'affixe z tels que :

$$|z| = 9$$

$$|z+2-3i|=4$$

$$|z - 3i| = |z + 3 - 5i|$$

Réponse

Remarques

Le plan P est rapporté à un repére orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- 1 L'ensemble de points M(z) tels que $|z z_A| = R$, $R > 0 \Leftrightarrow AM = R$ est le cercle de centre A et de rayon R.
- 2 L'ensemble de points M(z) tels que $|z z_A| = |z z_B|$ AM = BMest la médiatrice du segment [AB].

Exercice n 7

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on considère les points A, B, C et D d'affixes respectifs : $z_A = -2i$, $z_B = 4 - 2i$, $z_C = 4 + 2i$ et $z_D = 1$.

- 1 Préciser la nature du triangle ABC.
- On désigne par f l'application qui á tout point M(z) distinct de A associe le point M'(z') tel que : $z' = \frac{z 4 2i}{z + 2i}$.
 - a Déterminer les images de B et C par f.
 - b Déterminer l'ensemble des points M(z) tels que : |z'| = 1.
 - C Déterminer l'ensemble des points M(z) tels que : z' est réel.
- a Démontrer que pour tout $z \neq -2i$, on a : (z'-1)(z+2i) = -4-4i.
 - b En déduire que si M varie sur (\mathscr{C}) de centre A et de rayon R=4 alors M' varie sur un cercle (&') que l'on précisera.

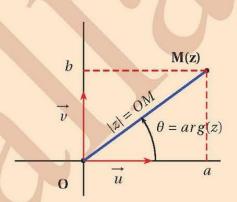
Réponse

*					
	 	••••••			
	 ***************************************			•••••	
	 	***************************************	************************************		•••••

Argument d'un nombre complexe

Soit z = a + ib un nombre complexe non nul et M son image dans le plan complexe muni du repère orthonormé direct $\left(O ; \overrightarrow{u}, \overrightarrow{v} \right)$. On appelle argument de z et on le note arg(z), toute mesure, en radian de l'angle orienté $\left(\overrightarrow{u}, \overrightarrow{OM}\right)$. On a donc :

$$arg(z) = (\overrightarrow{\mathbf{u}}, \overrightarrow{OM}) + 2k\pi = \theta + 2k\pi; \quad k \in \mathbb{Z} \quad \text{out}$$
bien $(\overrightarrow{\mathbf{u}}, \overrightarrow{OM}) \equiv \theta [2\pi]$



- Cas Particuliers

- Si z est un réel strictement positif alors $arg(z) = 2k\pi$, $k \in \mathbb{Z} \Leftrightarrow arg(z) \equiv 0[2\pi]$ **Exemple :** $arg(1) \equiv 0[2\pi]$, $arg(5) \equiv 0[2\pi]$, $arg(0.5) \equiv 0[2\pi]$, $arg(35) \equiv 0[2\pi]$
- 2 Si z est un **réel strictement négatif** alors $arg(z) = \pi + 2k\pi$, $k \in \mathbb{Z} \Leftrightarrow arg(z) \equiv \pi[2\pi]$ **Exemple :** $arg(-1) \equiv \pi[2\pi]$, $arg(-2) \equiv \pi[2\pi]$, $arg(-0.7) \equiv \pi[2\pi]$
- Si z = ib avec b un réel strictement positif alors

$$arg(z) = \frac{\pi}{2} + 2k\pi$$
, $k \in \mathbb{Z} \Leftrightarrow arg(z) \equiv \frac{\pi}{2}[2\pi]$

Exemple:
$$arg(i) \equiv \frac{\pi}{2}[2\pi]$$
, $arg(2i) \equiv \frac{\pi}{2}[2\pi]$, $arg(\frac{1}{4}i) \equiv \frac{\pi}{2}[2\pi]$.

4 Si z = ib avec b un réel strictement négatif alors

$$arg(z) = -\frac{\pi}{2} + 2k\pi$$
, $k \in \mathbb{Z}$ \Leftrightarrow $arg(z) \equiv -\frac{\pi}{2}[2\pi]$

Exemple:
$$arg(-i) \equiv -\frac{\pi}{2}[2\pi]$$
, $arg(-3i) \equiv -\frac{\pi}{2}[2\pi]$, $arg(-\frac{1}{3}i) \equiv -\frac{\pi}{2}[2\pi]$.

Propriétés

Soit z et z' deux nombres complexes non nuls , k un réel non nul et $n \in \mathbb{N}^*$.

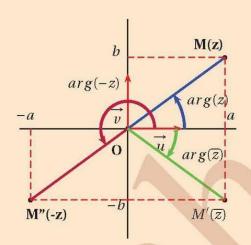
- $1 \quad arg(\overline{z}) \equiv -arg(z)[2\pi]$
- $2 \quad arg(-z) \equiv \pi + arg(z)[2\pi]$
- 3 Si k > 0 alors $arg(kz) \equiv arg(z)[2\pi]$
- 4 Si k < 0 alors $arg(kz) \equiv \pi + arg(z)[2\pi]$

$$\boxed{5} \quad arg(zz') \equiv arg(z) + arg(z')[2\pi]$$

$$arg(\frac{1}{z}) \equiv -arg(z)[2\pi]$$

$$arg(\frac{z}{z'}) \equiv arg(z) - arg(z')[2\pi]$$

$$arg(z^n) \equiv narg(z)[2\pi]$$



Forme trigonométrique et forme exponentielle d'un nombre complexe

- Définition (Forme trigonométrique d'un nombre complexe)

Soitz un nombre complexe non nul, z=a+ib, $(a,b)\in\mathbb{R}^2$. En notant r le module de z et θ un argument de z, on a :

$$cos(\theta) = \frac{a}{r} \Leftrightarrow a = rcos(\theta)$$

$$sin(\theta) = \frac{b}{r} \Leftrightarrow b = rsin(\theta)$$
 et $z = a + ib =$

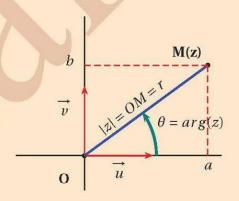
$$rcos(\theta) + irsin(\theta) = r(cos(\theta) + isin(\theta)).$$

L'écriture de z sous la forme $z = r(\cos(\theta) + i\sin(\theta))$

avec r > 0 et $\theta \in \mathbb{R}$ est appelée forme trigonométrique de z.

$$z = r(\cos(\theta) + i\sin(\theta)) = [r, \theta]$$

r et θ sont les **coordonnées polaires** du point M d'affixe z



- Exerc	cice n	18
---------	--------	----

Réponse

Ecrire, sous forme trigonométrique, les complexes suivants:

$$z_1 = 1 + i\sqrt{3}$$

$$z_2 = 1 - i$$
 $z_3 = 1 - i$

$$z_3 = -\sqrt{3} + i$$

$$z_4 = -\sqrt{3} - 3i$$

-

Propriétés

Soient $z = [r, \theta]$ et $z' = [r', \theta']$ deux nombres complexes non nuls. On a pour tout entier n:

$$\overline{z} = [r, -\theta] \qquad \frac{1}{z} = [\frac{1}{r}, -\theta] \qquad \frac{z}{z'} = [\frac{r}{r'}, \theta - \theta']$$

$$z \cdot z' = [r \cdot r', \theta + \theta'] \qquad z^n = [r^n, n\theta]$$

$$\frac{z}{z'} = \left[\frac{r}{r'}, \theta - \theta'\right]$$

Exercice n 9

Ecrire, sous forme trigonométrique, les complexes suivants:

$$z_1 = (-1 + i\sqrt{3})^3$$

$$z_2 = \frac{1}{1+i}$$

$$z_3 = \frac{1-i}{\sqrt{3}+i}$$

$$z_1 = (-1 + i\sqrt{3})^3$$
 $z_2 = \frac{1}{1+i}$ $z_3 = \frac{1-i}{\sqrt{3}+i}$ $z_4 = (-2+2i)(-\sqrt{3}-3i)$

Réponse

Définition (Forme exponentielle d'un nombre complexe)

Pour tout $\theta \in \mathbb{R}$, on pose $cos(\theta) + isin(\theta) = e^{i\theta}$

Soit $z = r(cos(\theta) + isin(\theta)) = [r, \theta]$ un nombre complexe non nul, l'écriture $z = re^{i\theta}$ avec r un réel strictement positif est la forme exponentielle $\det z$

Propriétés

$$e^{i\theta} \cdot e^{i\theta'} = e^{i(\theta + \theta')}$$
 $(e^{i\theta})^n = e^{i\theta}$

$$(e^{i\theta})^n = e^{in\theta}$$

$$e^{i\theta}.e^{i\theta'} = e^{i(\theta+\theta')}$$

$$\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}$$

$$\frac{1}{e^{i\theta}} = e^{-i\theta}$$

$$\frac{1}{e^{i\theta}} = e^{-i\theta} \qquad \mathbf{e}^{-i\theta} = \cos(\theta) - i\sin(\theta)$$

- Remarques

1 Si
$$z = re^{i\theta}$$
 alors $\overline{z} = re^{-i\theta}$ $-z = re^{i(\theta + \pi)}$

$$-z = re^{i(\theta + \pi)}$$

$$iz = re^{i(\theta + \frac{\pi}{2})}$$

$$-iz = re^{i(\theta + \frac{\pi}{2})}$$

$$z^n = r^n e^{in\theta}$$

$$e^{i\theta} = [1, \theta]$$

$$1 = e^{i0}$$

$$-1 = e^{i\pi}$$

$$i = e^{i\frac{\pi}{2}}$$

$$-i = e^{-i\frac{\pi}{2}}$$

$$e^{i(\theta+2k\pi)} = e^{i\theta}$$

<u>موقع مراجعة باكالوريا</u> BAC.MOURAIAA.COM

