INTEGRALES 4^{ème} Sc EXPERIMENTALES

Exercice 1

1) Calculer les intégrales suivantes :

$$\int_{0}^{1} (3x^{2} - 2x + 1) dx \; ; \; \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos x \sin^{2}x \, dx \; ; \; \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} 2 + \tan^{2}x \, dx \; ; \; \int_{1}^{0} -2x\sqrt{1 + x^{2}} \, dx$$

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \frac{2x \sin x - x^{2} \cos x}{\sin^{2}x} \, dx \; ; \; \int_{0}^{\frac{\pi}{2}} (\cos t \sin t) \, dt \; ; \; \int_{0}^{\frac{\pi}{2}} (2 \sin t + \cos t + 3) \, dt \; ;$$

$$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2}u} \, du \; ; \; \int_{0}^{1} \frac{2v}{\sqrt{v^{2} + 1}} \, dv - \int_{3}^{1} \frac{2v}{\sqrt{v^{2} + 1}} \, dv \; ; \; \int_{1}^{0} \frac{x^{2}}{(1 + x^{3})^{5}} \, dx \; ; \; \int_{0}^{\frac{\pi}{6}} \frac{\sin x}{\cos^{2}x} \, dx$$

- 2) a) Calculer $\int_{1}^{\frac{\pi}{2}} t \cos t \, dt$
 - b) En déduire $\int_{0}^{\frac{\pi}{2}} t^2 \sin t \, dt$

Exercice 2

Donner la bonne réponse

$$1) Soit I = \int_0^{\pi} x \sin t \ dt$$

a)
$$I = \pi \sin t$$

b)
$$I = 2x$$

c)
$$I = \pi \sin x$$

2) Soit
$$J = \int_{-1}^{1} \frac{x^5}{\sqrt{1+x^2}} dx$$

a)
$$I = 1$$

b)
$$J = -1$$

c)
$$J=0$$

a)
$$J=1$$
 b) $J=-$
3) La fonction $x \mapsto \int_0^x \frac{\sin t}{1+t} dt$ est dérivable sur :

a)
$$\mathbb{R}\setminus\{-1\}$$

b)]-1, +
$$\infty$$
[

c)
$$]-\infty$$
, $-1[$

Exercice 3

Indiquer la bonne réponse

1) Soit
$$I = \int_0^1 2t \cos^2(\pi t) dt$$
 et $J = \int_0^1 2t \sin^2(\pi t) dt$ alors $I + J =$

$$a) -1$$

2) Soit
$$K = \int_0^\pi \sin^2 x \, dx$$
 alors $K =$

b)
$$\frac{\pi}{2}$$

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \cos x$.

1) a) Calculer $\forall x \in \left[0, \frac{\pi}{2}\right]; f'(x)$

- b) Justifier que f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, 1\right]$.
- 2) Soit g la fonction réciproque de f.
 - a) Justifier que g est dérivable sur [0, 1].
 - **b)** Montrer que $\forall x \in [0, 1[: g'(x) = -\frac{1}{\sqrt{1-x^2}}]$
- 3) a) Calculer $g\left(\frac{1}{2}\right)$ et $g\left(\frac{\sqrt{3}}{2}\right)$.
 - **b)** Montrer que $\int_{\frac{1}{x}}^{\frac{\sqrt{3}}{2}} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{6}$

Exercice 5

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 + 3x^2 + 4x$ et soit (C) sa courbe représentative dans un repère orthonormé $(0\vec{i},\vec{j})$.

- 1) a) Dresser le tableau de variation de f.
 - b) Montrer que I(-1, -2) est un point d'inflexion de (C).
 - , c) Donner une équation de la tangente T à (C) en I.
- 2) a) Dresser le tableau de variation de f' et en déduire que $\forall t \in \mathbb{R}$ on a : $f'(t) \geq 1$.
- b) Montrer en intégrant l'inégalité précédente que $\forall x \in [-1, +\infty[$ et $\forall t \in [-1, x]$ on a $f(x) \ge x - 1$
- d) En déduire la position relative de (C) et T.

Exercice 6

Soit la fonction f définie sur [0,1] par $f(x) = \sqrt{\frac{x}{1-x}}$ et soit (C) sa courbe.

- 1) a) Etudier la dérivabilité de f à droite en 0 et interpréter le résultat graphiquement.
 - b) Dresser le tableau de variation de f.
 - c) Montrer que f admet une fonction réciproque que l'on note f^{-1} définie sur $[0, +\infty[$.
 - d) Montrer que $\forall x \in [0, +\infty[, f^{-1}(x)] = \frac{x^2}{1+x^2}$
 - e) Tracer (C) et (C') courbe de f^{-1} .
- 2) Soit A l'aire de la partie du plan limité par la courbe (C) et les droites d'équations respectives :

$$y = 1$$
; $x = 0$ et $x = \frac{1}{2}$

y = 1; x = 0 et $x = \frac{1}{2}$ Montrer que $A = \int_0^1 \frac{x^2}{1 + x^2} dx$

- 3) Soit F la fonction définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{par} F(x) = \int_{0}^{\tan x} \frac{x^2}{1+x^2} dx$
 - b) Montrer F est dérivable sur $\left|-\frac{\pi}{2} \frac{\pi}{2}\right|$ et déterminer F'(x)
 - c) Montrer alors que $\forall x \in \left] -\frac{\pi}{2} \frac{\pi}{2} \right[$ on a $F(x) = -x + \tan x$
- 4) Déduire alors la valeur exacte

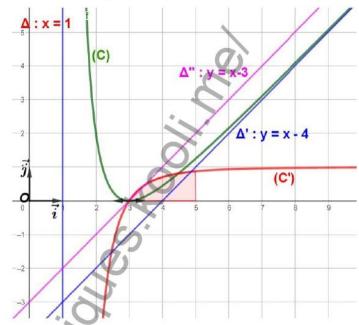
On désigne par A l'aire de la partie du plan limitée par la courbe (C'), l'axe des abscisses et les droites d'équation x = 3 et x = 5.

- 1) a) Par lecture graphique donner f'(3), $\lim_{x\to +\infty} f(x) (x-4)$ et $\lim_{x\to 1^+} f(x)$
 - b) Par lecture graphique déterminer f(3).
- 2) a) Par lecture graphique donner la position relative de (C) et $\Delta': y = x 4$ et la position relative de (C) et $\Delta'': y = x 3$.
 - b) En déduire que : 0 < A < 2.

3) Soit
$$J = \int_{3}^{5} x f'(x) dx$$

A l'aide d'une intégration par parties, montrer que : J = 5f(5) - A

4) Sachant que $f(x) = x - 4 + \frac{4}{(x-1)^2}$; déterminer la valeur de A puis la valeur de J.



Exercice 7

Soit la fonction f définie sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ par $f(x) = tan^2x$ et soit (C) sa courbe.

- 1) Etudier f et tracer (C).
- 2) Soit A l'aire de la partie du plan limitée par la courbe (C) l'axe des abscisses et les droites d'équations x=0 et $x=\frac{\pi}{4}$ Calculer A.
- 3) Soit la fonction g définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[par : g(x) = f^2(x) + f(x)]$.
 - a) Montrer que g admet une unique primitive G sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ qui s'annule en 0.
 - b) Montrer que $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[; G(x) = \frac{1}{3} tan^3 x.$
- 4) Calculer le volume V engendré par la rotation de A autour de l'axe des abscisses.

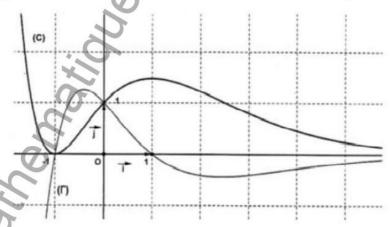
Exercice 8

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \sin x$

- 1) Etudier les variation de f et construire sa courbe (C).
- 2) Calculer A l'aire de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x=0 et $x=\frac{\pi}{2}$
- 3) Calculer le volume V du solide de révolution engendré par la rotation de A au tour de l'axe des abscisses.

Exercice 9

On a représenté ci-dessous, dans un repère orthonormé $(0\ \vec{\imath}\ ,\vec{\jmath})$ les courbes (C) et (Γ) , représentative d'une fonction f définie et dérivable sur $\mathbb R$ et de sa fonction dérivée f'.



- 1) Reconnaître la courbe représentative de f et celle de f'.
- 2) Déterminer (0) f'(0), f(-1) et f'(-1)
- 3) Calculer l'aire \mathcal{A} de la partie du plan limitée par la courbe de f' l'axe des abscisses et les droites d'équations x = -1 et x = 0
- A) Soit (U_n) la suite définie sur N^* par $U_n = \int_0^1 x^n f'(x) dx$
 - a) A l'aide d'une intégration par partie montrer que $U_1 = f(1) \int_0^1 f(x) dx$

- b) Montrer que (U_n) est décroissante
- c) Montrer que $0 \le U_n \le \frac{1}{n+1}$ pour tout $n \in \mathbb{N}^*$
- d) Déduire que (U_n) est convergente et calculer sa limite.

Exercice 10

Soit la fonction f définie sur IR par $f(x) = \frac{2x-1}{\sqrt{x^2-x+\frac{1}{2}}}$ et soit C_f sa courbe représentative dans un repère

orthonormé ($0, \vec{i}, \vec{j}$). (unité graphique 2 cm).

- 1) a) Montrer que le domaine de définition de f est $D_f = IR$.
 - b) Montrer que pour tout x de $IR \ f'(x) = \frac{1}{2\sqrt{x^2 x + \frac{1}{2}(x^2 2x + \frac{1}{2})}}$
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que $I\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right)$ est un centre de symétrie de C_f .
 - b) Donner une équation cartésienne de la tangente T à C_f en I.
 - c) Tracer C_f et T dans le même repère $(0, \vec{i}, \vec{j})$.
- 3) Calculer l'aire de la partie du plan limitée par C_f , l'axe des abscisses et les droites :

$$\Delta_1$$
: $x = \frac{1}{2}$ et Δ_2 : $x = 1$

Exercice 11

On considère la fonction f définie sur $\mathbb R$ par : $f(x) = 1 + \frac{x}{\sqrt{1+x^2}}$

Soit (C_f) sa courbe représentative dans un repère orthonormé $(O, \vec{\iota}, \vec{j})$

- 1) a) Dresser le tableau de variation de f
 - b) Ecrire une équation de la tangente T à (C_f) au point d'abscisse 0
 - c) Etudier la position relative de (C_f) et la tangente T
- 2) a) Montrer que l'équation f(x) = x admet dans $\mathbb R$ une solution unique α et $1 < \alpha < 2$
 - **b)** Construire (C_f) et T
- 3) a) Calculer l'aire de la partie du plan limitée par (C_f) , l'axe des abscisses et les droites d'équations

$$x = -1 \text{ et } x = 1$$

- b) Montrer que pour tout $x \ge 1$ on a $0 \le f'(x) \le \frac{\sqrt{2}}{4}$
- 4) a) Montrer que f réalise une bijection de $\mathbb R$ vers un intervalle J que l'on précisera
 - b) Montrer que f^{-1} est dérivable en $\,$, puis déterminer $(f^{-1})'(1)$
 - c) Construire dans le même repère $(C_{f^{-1}})$
- 5) On considère la suite (U_n) définie par : $U_{0.}=2$ et $U_{n+1}=f(U_n)$ pour tout $n\in\mathbb{N}$
 - a) Montrer que pour tout $n \in \mathbb{N}$ on a $U_n \geq 1$
 - **b)** Montrer que pour tout $n \in \mathbb{N}$ on a $|U_{n+1} \alpha| \leq \frac{\sqrt{2}}{4} |U_n \alpha|$ π

c) En déduire que la suite (Un) est convergente

Exercice 12

- A) Soit la fonction f définie sur \mathbb{R}_+ par : $f(x) = \frac{x^2+2}{x^2+1}$
- 1) a) Dresser le tableau de variations de la fonction f sur \mathbb{R}_+ .
 - b) Tracer la courbe C_f de f.
 - c) Montrer graphiquement que l'équation f(x) = x admet une unique solution.
- 2) a) Montrer que f admet une fonction réciproque f^{-1} définie sur [1,2].
 - b) Calculer $f^{-1}(x)$ en fonction de x.
 - c) Tracer C' la courbe de f^{-1} .
- 3) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = \tan x$
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera.
 - **b)** Calculer $g^{-1}(0)$ et $g^{-1}(1)$.
 - c) Montrer que g^{-1} est dérivable sur $[0, +\infty]$ calculer $(g^{-1})'(x)$ pour tout $x \in [0, +\infty]$.
- 4) Calculer l'aire A du domaine plan limité par la courbe C_f l'axe des abscisses et les droites x = 0 et x = 1.

Exercice 13
Soit la suite réelle définie sur
$$IN^*$$
 par :
$$U_n = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$$

- 1) a) Justifier l'existence de U_n pour tout $n \in IN^*$.
 - **b)** Montrer que $\forall n \in IN^*$, $U_n \ge 0$.
 - c) Montrer que la suite U est décroissante. Que peut-on conclure ?
 - d) Vérifier que : $U_1 = 1$ et que $U_2 = \frac{\pi}{4}$.
- 2) a) A l'aide d'une intégration par parties montrer que :

$$\forall n \in \mathbb{N}^*; \int_0^{\frac{\pi}{2}} \sin^n x \cos^2 x \, dx = \frac{1}{n+1} U_{n+2}$$

- b) En déduire $\forall n \in IN^*$ on $a: U_{n+2} = \frac{n+1}{n+2} U_n$.
- c) Montrer que pour tout entier $n \ge 2$ on a : $\frac{n}{n+1}$ $U_n \le U_{n+1} \le U_n$ en déduire la limite de $\frac{U_{n+1}}{U_n}$

Exercice 14

On a représenté ci-dessous la courbe (C) d'une fonction f définie et dérivable sur]1, $+\infty[$ et la courbe (C') de sa fonction dérivée.

Les droites Δ et Δ' d'équations respectives x=1 et y=x-4 sont des asymptotes à (C). La courbe (C) admet au point d'abscisse 3 une tangente horizontale.