FONCTION EXPONENTIELLE 4ème MATHEMATIQUES

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

Exercice 1

Soit la fonction f définie par $f(x) = \sqrt{1 - e^{-2x}}$; on désigne par C_f sa courbe représentative.

- 1) a) Justifier que \mathbb{R}_+ est le domaine de définition de la fonction f.
 - b) Etudier la dérivabilité de f en 0.
 - c) Etudier les variations de f et tracer sa courbe C_f .
- 2) a) Montrer que f réalise une bijection de IR_+ sur un intervalle J que l'on déterminera.
 - b) Soit f^{-1} la fonction réciproque de f; calculer $f^{-1}(x)$ en fonction de x.
 - c) Tracer la courbe $C_{f^{-1}}$ de la fonction f^{-1} .

Exercice 2

- 1) Soient les fonctions g et h définies sur \mathbb{R} par $g(x) = e^{-x} + x 1$ et $h(x) = e^x x 1$
 - a) Dresser les tableaux de variation de g et h
 - b) Montrer alors que pour tout $x \ge 0$ on a $g(x) \ge 0$ et $h(x) \ge 0$
 - a) En déduire que pour tout réel $x \ge 0$, on a : $1 x \le e^{-x} \le \frac{1}{1+x}$.
- 2) Montrer que pour tout réel x > 0 et pour tout entier $n \ge 1$, on a : $1 \frac{1}{nx} \le e^{-\frac{1}{nx}} \le 1 \frac{1}{1+nx}$.
- 3) On pose pour tout $n \in \mathbb{N}^*$, $U_n = \int_1^2 \left(1 e^{-\frac{1}{nt}}\right) dt$ et $V_n = nU_n$.
 - a) Montrer que pour tout $n \ge 1$, $\frac{1}{n} \ln \left(\frac{2n+1}{n+1} \right) \le U_n \le \frac{\ln 2}{n}$.
 - **b)** Calculer $\lim_{n\to+\infty} V_n$.
- 4) Soit $n \in \mathbb{N}^*$. Pour tout réel $x \ge 1$, on pose $F_n(x) = \int_n^{nx} \varphi(t) \ dt$ où $\varphi(t) = 1 e^{-\frac{1}{t}}$
 - a) Vérifier que pour tout réel $x \ge 1$ on $a : F'_n(x) = n \left(1 e^{-\frac{1}{nx}}\right)$.
 - b) Calculer $F_n(1)$ puis déduire que $U_n = \frac{1}{n} \int_{n}^{2n} \varphi(t) dt$.
 - c) Interpréter graphiquement les termes de chacune des suites (U_n) et (V_n) .

Exercice 3

Soit *n* un entier naturel non nul et f_n la fonction définie sur $[0, +\infty[$ par $: \begin{cases} f_n(x) = xe^{-\frac{1}{nx}} & \text{si } x > 0 \\ f_n(0) = 0 \end{cases}$.

- et soit (C_n) sa courbe représentative.
- 1) a) Montrer que f_n est continue sur $[0, +\infty[$.
 - b) Etudier la dérivabilité de f_n à droite en 0.

c) Montrer que f_n est dérivable sur]0, $+\infty[$ et que $\forall x \in]0$, $+\infty[$, $f'_n(x) = \left(1 + \frac{1}{nx}\right)e^{-\frac{1}{nx}}$

d) Dresser le tableau de variation de f_n .

2) On se propose d'étudier la branche infinie de (C_n) .

a) Montrer que pour tout $t \in [0, +\infty[, 0 \le 1 - e^{-t} \le t]$.

b) En déduire que pour $u \in [0, +\infty[, 0 \le e^{-u} - (1-u) \le \frac{u^2}{2}]$.

c) Montrer alors que $\forall x \in]0$, $+\infty[$, $0 \le f_n(x) - \left(x - \frac{1}{n}\right) \le \frac{1}{2n^2x}$.

d) Conclure.

3) Tracer la courbe (C_1) et son asymptote en précisant la tangente en 0.

4) On pose $\forall n \in \mathbb{N}^*$, $I_n = \int_0^1 f_n(x) dx$.

a) Montrer que $\forall x \in [0, 1], f_n(x) \leq x$. En déduire que $\forall n \geq 1, I_n \leq \frac{1}{2}$.

b) En utilisant 2)c) montrer que $\frac{1}{2} - \frac{1}{n} \le I_n$.

c) Calculer alors $\lim_{n\to+\infty}I_n$.

Exercice 4

Soit la suite U définie sur IN^* par : $U_n = \int_0^1 e^{-x} (x-1)^n dx$

1) a) Montrer que $\forall n \in IN^*$ on a : $U_{n+1} - (n+1)U_n = (-1)^{n+1}$.

b) Calculer U_1 et U_2 .

2) Pour tout $n \in IN^*$ on pose : $V_n = U_{2n}$ et $W_n = U_{2n+1}$

a) Montrer que $\forall n \in IN^*$ on $a: \frac{e^{-1}}{2n+1} \leq V_n \leq \frac{1}{2n+1}$

b) Montrer que $\forall n \in IN^*$ on $a::\frac{-1}{2n+2} \leq W_n \leq \frac{-e^{-1}}{2n+2}$

c) Déterminer alors la limite de la suite U.

3) a) Montrer que les suite V et W sont monotones.

b) Montrer que les suite V et W sont adjacentes.

Exercice 5

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{2}{e^{x} + e^{-x}}$ et soit C_f sa courbe représentative.

1) Dresser le tableau de variation de f.

2) Soit g la fonction définie sur $\left]0, \frac{\pi}{2}\right[\operatorname{par} : g(x) = \ln(\tan x).$

a) Montrer que g réalise une bijection de $\left]0$, $\frac{\pi}{2}\right[$ sur $\mathbb{R}.$

b Montrer que g^{-1} est dérivable sur $\mathbb R$ et calculer $(g^{-1})'(x)$ pour tout $x \in \mathbb R$.

3) Calculer l'aire de la partie du plan limitée par la courbe \mathcal{C}_f et les droites d'équation :

x = 0, $x = \ln(\sqrt{3})$ et y = 0.

- c) Calculer g(0) et en déduire le signe de g(x); $\forall x \in \mathbb{R}$.
- d) Préciser la position relative de (C) par rapport à T.
- 3) Tracer (C) et T.
- 4) a) Montrer que f réalise une bijection de \mathbb{R} sur]-1, 1[.
 - **b)** Expliciter $f^{-1}(x)$ pour tout $x \in]-1$, 1[.
 - c) Tracer la courbe (C') de f^{-1} .
- 5) a) Montrer que pour tout $x \in \mathbb{R}$; $f(x) = -1 + \frac{2e^x}{1+e^x}$
- b) Calculer l'aire A de la partie du plan limitée par la courbe (C) l'axe des abscisses et les droites x = 0 et x = 2.

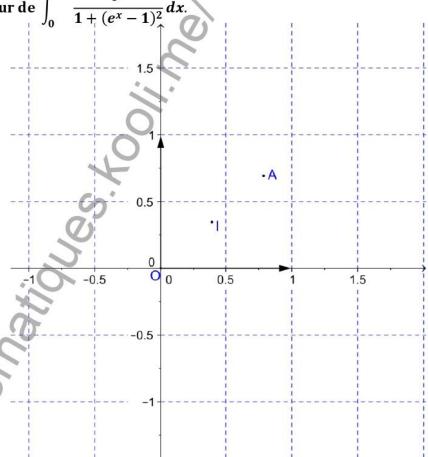
Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{e^{2x}}{1 + e^{2x}}$ et soit (C) sa courbe représentative

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
 - b) Montrer que pour tout réel x on $a: f'(x) = \frac{2e^{2x}}{(1+e^{2x})^2}$
 - c) Montrer que le point $I\left(0,\frac{1}{2}\right)$ est un centre de symétrie de (C)
 - d) Donner une équation cartésienne de la tangente T à (C) au point I
- 2) a) Montrer que pour tout réel t on a : $f'(t) \le \frac{1}{2}$
- b) En intégrant les deux membres de l'inégalité précédente montrer que pour réel $x \ge 0$ on a : f(x)) $\le \frac{1}{2}(x+1)$
 - c) Déterminer alors la position de (C) par rapport à T.
- **3)** Tracer (*C*) et *T*
- 4) Soit la suite (I_n) définie sur \mathbb{N}^* par : $I_n = \int_{-1}^0 \frac{e^{2nt}}{1 + e^{2t}} dt$
 - a) Montrer que la suite $(I_n)_{n\in\mathbb{N}^*}$ est décroissante et positive.
 - b) En déduire que la suite $(I_n)_{n\in\mathbb{N}^*}$ est convergente.
 - c) Montrer que pour tout entier naturel n non nul on a : $I_n \le \frac{1}{2n}$
 - d) En déduire $\lim_{n\to+\infty}I_n$.

- A) Soit f la fonction définie sur \mathbb{R} par : $f(x) = 1 + \frac{1}{e^{x+1}}$ et soit C_f sa courbe
- 1) a) Dresser le tableau de variation de f.
- b) Montrer que le point $I\left(0,\frac{3}{2}\right)$ est un centre de symétrie de C_f .
- 2) a) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on précisera.
 - **b)** Expliciter $f^{-1}(x)$ pour tout

On a représenté ci-dessous les points A et I dans le repère $(0, \vec{\iota}, \vec{j})$.

- 3) Tracer la courbe (C) en précisant sa tangente au point O.
- 4) On désigne par S_1 la partie du plan limitée par la courbe (C) la droite (OA) et les droites d'équations x=0 et $x=\frac{\pi}{8}$ et on désigne par S_2 la partie du plan limitée par la courbe (C) la droite (OA) et les droites d'équations $x=\frac{\pi}{8}$ et $x=\frac{\pi}{4}$
 - a) Justifier que S_1 et S_2 ont la même aire.
 - b) Calculer alors $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) \, dx.$
- 5) a) Montrer que la fonction f réalise une bijection de l'intervalle $\left]-\frac{\pi}{4},\frac{\pi}{2}\right[$ sur un intervalle J que l'on précisera. On note f^{-1} la réciproque de f.
 - b) Justifier que f^{-1} est dérivable sur J et donner l'expression de $(f^{-1})'(x)$ pour x appartenant à J.
 - c) Donner la valeur de $\int_0^{ln2} \frac{e^x}{1 + (e^x 1)^2_{\uparrow}} dx.$



Exercice 26

Pour tout entier naturel non nul, on considère la fonction $f_n:\mathbb{R}\to\mathbb{R}$, $x\mapsto e^{\frac{-x}{n}}$ et soit C_n sa représentation graphique.

- 1) a) Dresser le tableau de variation de f_n .
 - b) Vérifier que toutes les courbes C_n passent par le point J(0,1).

- d) Tracer la courbe C_f et préciser sa tangente au point d'abscisse,
- 3) a) Montrer que f réalise une bijection de IR sur IR.
 - b) Tracer dans le même repère la courbe $C_{f^{-1}}$ de la fonction f^{-1} réciproque de f.
 - c) Calculer la mesure A de l'aire du domaine plan :

 $\mathcal{D} = \{ M(x, y) \in P / -1 \le x \le 0 \text{ et } 0 \le y \le f^{-1}(x) \} \cup \{ M(x, y) \in P / 0 \le x \le 1 \text{ et } x \le y \le f^{-1}(x) \}$

Exercice 19

- A) Soit g la fonction définie sur \mathbb{R} par : $g(x) = 1 + (1 x)e^{-x}$
- 1) Montrer que $\forall x \in \mathbb{R}$ on $a: g'(x) = (x-2)e^{-x}$
- 2) Etudier le sens de variation de g. Calculer g(2).
- 3) En déduire que $\forall x \in \mathbb{R}$ on a : g(x) > 0.
- B) Soit f la fonction définie sur \mathbb{R} par : $f(x) = x 1 + xe^{-x}$ et soit (C) sa courbe représentative.
- 1) a) Montrer que $\forall x \in \mathbb{R}$ on a : f'(x) = g(x).
 - b) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
 - c) Dresser le tableau de variation de f
- 2) Montrer que le point I de (C) d'abscisse 2 est un point d'inflexion de (C).
- 3) a) Montrer que la droite D: y = x 1 est une asymptote à (C) au voisinage de $+\infty$.
 - b) Etudier la position de (C) et D.
 - c) Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x}$. Interpréter le résultat obtenu graphiquement.
- 4) a) Montrer que f réalise une bijection de \mathbb{R} sur \mathbb{R} .
 - b) En déduire que l'équation f(x) = 0 admet dans $\mathbb R$ une unique solution α et que $0, 5 < \alpha < 1$
- 5) On note f^{-1} la réciproque de f et soit (C') sa courbe représentative.
 - a) Justifier que f^{-1} est dérivable sur \mathbb{R} .
 - **b)** Calculer f(1) puis $(f^{-1})'(\frac{1}{e})$.
 - d) Construire (C) et (C') dans le même repère
- 5) Calculer l'aire A de la partie du plan limitée par la courbe (C) la droite D et les droites

$$x = 0$$
 et $x = 1$

Exercice 20

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 1 - \frac{2}{1 + e^x}$ On désigne par (C) sa courbe représentative.

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. Interpréter le résultat graphiquement.
 - b) Dresser le tableau de variation de f.
 - c) Ecrire une équation cartésienne de la tangente T à (C) au point O.
- 2) Soit g la fonction définie sur \mathbb{R} par : $g(x) = \frac{x}{2} f(x)$
 - a) Montrer que $\forall x \in \mathbb{R}$ on $a: g'(x) = \frac{1}{2} \left(\frac{e^x 1}{e^x + 1}\right)^2$
 - b) Dresser le tableau de variat

- 2) Soit g la fonction définie sur $\left|0, \frac{\pi}{2}\right|$ par $g(x) = -ln(\cos x)$.
 - a) Montrer que g admet une fonction réciproque h définie sur \mathbb{R}_+^* . Calculer $hig(rac{ln2}{2}ig)$.
 - b) Montrer que h est dérivable sur]0, $+\infty[$ et que h'(x) = f(x).
 - c) En déduire que pour tout $x \in]0$, $+\infty[$, on a : $\int_{\frac{\ln 2}{2}}^{x} f(t) dt = h(x) \frac{\pi}{4}$.
- 3) Pour tout $n \in \mathbb{N}^*$ et pour tout $x > \frac{\ln 2}{2}$, on pose $F_n(x) = \int_{\frac{\ln 2}{2}}^x [f(t)]^n dt$.
 - a) Montrer que $\lim_{x \to +\infty} F_1(x) = \frac{\pi}{4}$
 - b) Montrer que pour tout t>0, $[f(t)]^2=\frac{e^{-2t}}{1-e^{-2t}}$, calculer alors $F_2(x)$ et $\lim_{x\to +\infty}F_2(x)$.
 - c) Montrer que F_n est strictement croissante sur $[\ln 2, +\infty[$
 - d) Vérifier que pour tout $> \frac{\ln 2}{2}$, on a : $f(t) \le 2e^{-t}$. En déduire que $F_n(x) < \sqrt{2}$.
 - e) Montrer alors que F_n admet une limite finie U_n quand x tend vers $+\infty$.
- 4) a) Donner les valeurs de U_1 et U_2 .
 - **b)** Vérifier que pour tout t > 0, $[f(t)]^{n+2} + [f(t)]^n = -f'(t) \times [f(t)]^{n-1}$.

En déduire que : $F_{n+2}(x) + F_n(x) = \frac{1-[f(x)]^n}{n}$

- c) Montrer que pour tout $n \in \mathbb{N}^*$, $U_{n+2} + U_n = \frac{1}{n}$ et que (U_n) est décroissante
- d) En déduire que (U_n) est convergente et calculer sa limite.
- 5) On pose pour tout $n \in \mathbb{N}^*$, $V_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$
 - a) Montrer que pour tout $n \in \mathbb{N}^*$; $V_n = 2 \sum_{k=1}^n (-1)^{k-1} \times U_{2k+2} + 2 \sum_{k=1}^n (-1)^{k-1} \times U_{2k}$
 - b) Montrer alors que pour tout $n \in \mathbb{N}^*$, $U_{2n+2} = \frac{(-1)^n}{2}(\ln 2 V_n)$.
 - c) En déduire que (V_n) est convergente et déterminer sa limite.

Exercice 24

A) Soit f la fonction définie sur]-ln2, $+\infty[$ par : $f(x)=\frac{1}{\sqrt{2e^x-1}}$.

On désigne par C_f sa représentation dans un repère orthonormé $(0, \vec{t}, \vec{j})$.

- 1) a) Montrer que pour tout $\in]-ln2$, $+\infty[$, on a: $f'(x)=\frac{-e^x}{(2e^x-1)\sqrt{2e^x-1}}$.
 - b) Dresser le tableau de variation de f et préciser f(0).
 - c) Construire C_f .
- 2) Soit g la fonction définie sur $[0, \pi[par : g(x) = -ln(1 + \cos x)]$.

- a) Dresser le tableau de variations de g.
- b) Montrer que g réalise une bijection de $[0, \pi]$ sur $[-ln2, +\infty]$
- c) Soit g^{-1} la réciproque de g. Montrer que g^{-1} est dérivable sur]-ln2 , $+\infty[$ et que $\forall \in]-ln2$, $+\infty[$ on a $(g^{-1})'(x) = f(x)$
- B) Soit F_n la fonction définie sur $[0,+\infty[$ par $F_n(x)=\int_0^x[f(t)]^ndt \ \forall n\in\mathbb{N}^*$
- 1) a) Montrer que $F_1(x) = g^{-1}(x) \frac{\pi}{2}$
- b) On désigne par A l'aire de la partie du plan limitée par \mathcal{C}_f , l'axe des abscisses et les droites d'équations x = 0 et x = ln2. Montrer que $A = \frac{\pi}{6}$.
 - c) Vérifier que, pour tout réel $t \ge 0$, on a : $\frac{1}{2e^{t}-1} = \frac{e^{-t}}{2-e^{-t}}$, puis expliciter $F_2(x)$.
- 2) On admet que F_n admet une limite finie lorsque x tend vers $+\infty$ et on note $L_n = \lim_{x \to +\infty} F_n(x)$
 - a) Calculer L_1 et L_2
 - b) En remarquant que pour tout réel $t \geq 0$ on a : $0 \leq f(t) \leq 1$, montrer que $F_{n+1}(x) \leq F_n(x)$
 - c) En déduire que la suite (L_n) est décroissante, puis qu'elle est convergente.
- 3) a) Montrer que, pour tout réel ≥ 0 , $f(t) + [f(t)]^3 = -2f'(t)$
 - b) En déduire que, pour tout $n \in \mathbb{N}^*$, $F_n(x) \leq F_{n+2}(x) = \frac{2}{n} [1 (f(x))^n]$
- 4) On pose, pour tout $n \in \mathbb{N}^*$, $U_n = (-1)^n L_{2n}$ et $S_n = \sum_{i=1}^n \frac{(-1)^{k+1}}{k}$
 - a) Montrer que, $U_{n+1} = U_n + \frac{(-1)^{n+1}}{n}$
 - a) En déduire que : $\lim_{n\to+\infty} S_n = \ln 2$

Soit f la fonction définie sur $\left|-\frac{\pi}{4}, \frac{\pi}{2}\right|$ par $f(x) = \ln(1 + \tan x)$ et soit (C) sa courbe représentative.

- 1) a) Montrer que $\lim_{x \to \left(-\frac{\pi}{4}\right)^+} f(x) = -\infty$ et $\lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = +\infty$
 - b) Calculer f'(x) pour x appartenant à $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.
 - c) Dresser le tableau de variation de f.
- 2) a) Vérifier que les points O, $A\left(\frac{\pi}{4}, ln2\right)$ et $I\left(\frac{\pi}{8}, \frac{ln2}{2}\right)$ sont des points de (C).

(On donne $\tan \frac{\pi}{8} = \sqrt{2} - 1$)

b) Montrer que $f\left(\frac{\pi}{4} - x\right) = \ln 2 - f(x)$ pour x appartenant à $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$

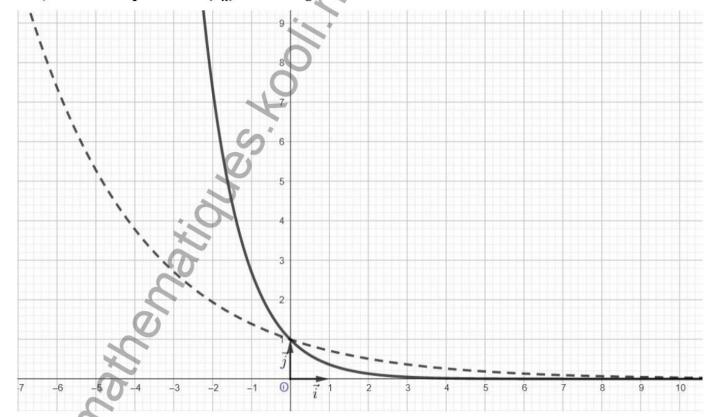
(On rappelle que tan $\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$)

c) Justifier alors que le point I est un centre de symétrie de la courbe (C).

- c) Pour tout entier naturel non nul, étudier la position relative de C_n et C_{n+1} sur chacun des intervalles $]-\infty$, 0] et $[0,+\infty[$.
- 2) Dans la figure ci-dessous, on a tracé les courbes C_1 et C_3 ainsi que la droite $\Delta: y = x$.
 - a) On a tracé deux courbes une en trait interrompu et une en trait continu.

Indique celle qui est la courbe de C_1 et celle qui la courbe de C_2

- b) Tracer alors la courbe C_2 de la fonction f_2 dans le même repère.
- 3) On considère la fonction g_n définie sur $[0, +\infty[$ par $g_n(x) = f_n(x) x$.
 - a) Dresser le tableau de variation de g_n .
- b) Montrer qu'il existe un unique réel $x_n \in]0$, 1[tel que $g_n(x_n) = 0$, on définie ainsi une suite (x_n) pour tout entier naturel non nul.
 - c) Vérifier que x_n est l'abscisse du point d'intersection de la courbe C_n de f_n et la droite Δ .
 - d) Placer les trois premiers termes de suite (x_n) sur l'axe des abscisses.
- 4) a) Montrer que $g_{n+1}(x_n) = e^{\frac{-x_n}{n+1}} e^{\frac{-x_n}{n}}$
 - b) Montrer que $g_{n+1}(x_n) > g_{n+1}(x_{n+1})$ puis conclure que la suite (x_n) est croissante.
 - c) En déduire que la suite (x_n) est convergente et déterminer sa limite.



- b) En déduire : $\lim_{n \to +\infty} I_n$
- 5) a) Montrer que : $\forall n \in \mathbb{N}^* \setminus \{1\}$, $I_n = -ln\left(2(1-\alpha)\right) + \sum_{k=1}^{n-1} \frac{1}{k} \left(\frac{1}{2^k} \alpha^k\right)$.
 - b) En déduire $\lim_{n\to+\infty}\sum_{k=1}^{n-1}\frac{1}{k}\left(\frac{1}{2^k}-\alpha^k\right)$.

- 1) Pour tout réel $x \ge 0$ et pour tout $n \in \mathbb{N}^*$, on pose $G_n(x) = \int_0^x e^{-nt} dt$.
 - a) Montrer que: $G_n(x) = \frac{1}{n} \frac{e^{-nx}}{n}$.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$: $\lim_{x \to +\infty} G_n(x) = \frac{1}{n}$.
- 2) a) Montrer que pour tout réel $t \ge 0$, $1 t \le \frac{1}{1+t} \le 1$.
 - b) En déduire que pour tout réel $p \ge 0$, $p \frac{p^2}{2} \le \ln(1+p) \le p$.
- 3) Soit la fonction F_n définie sur $[0,+\infty[$ par $:F_n(x)=\int_0^x e^{-t}\ln(1+e^{-nt})\ dt$.
 - a) Montrer que : F_n est croissante sur $[0, +\infty[$.
 - b) Montrer que pour tout réel $x \ge 0$ $G_{n+1}(x) \frac{G_{2n+1}(x)}{2} \le F_n(x) \le G_{n+1}(x)$.
 - c) Montrer que F_n admet une limite finie lorsque x tend vers $+\infty$. On pose $U_n=\lim_{x\to +\infty}F_n(x)$.
 - d) Montrer que tout entier $n \ge 1$, $\frac{1}{n+1} \frac{1}{4n+2} \le U_n \le \frac{1}{n+1}$.
 - e) Calculer alors $\lim_{n\to+\infty}U_n$.
- 4) Pour tout réel $x \ge 0$, on pose $H_n(x) = \int_0^x \frac{e^{-t}}{1 + e^{nt}} dt$
 - a) A l'aide d'une intégration par parties montrer que :

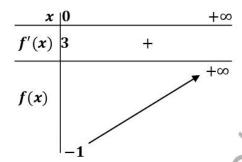
$$F_n(x) = \ln 2 - e^{-x} \ln(1 + e^{-nx}) - nH_n(x).$$

- b) Déduire que H_n admet une limite finie W_n lorsque x tend vers $+\infty$.
- c) Montrer que $\lim_{n\to+\infty} nW_n = \ln 2$.

- 1) Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = (x-1)e^x + 1$.
 - a) Etudier les variations de f et tracer sa courbe représentative C.
 - b) Préciser la position de C par rapport à la droite D: y = x.
- 2) a) Montrer que f réalise une bijection de $[0,+\infty[$ sur $[0,+\infty[$.
 - **b)** Construire la courbe C' de f^{-1} .
- 3) Calculer l'aire 🋪 de la région du plan comprise entre les courbes C et C'.

Soit f la fonction définie sur IR_+ par $f(x) = x + (x-1)e^{-x}$ et soit C_f sa courbe représentative (unité graphique cm).

- 1) a) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$
 - b) Montrer que la droite Δ : y = x est une asymptote à \mathcal{C} au voisinage de $+\infty$
 - c) Déterminer la position relative de \mathcal{T} et Δ
- 2) On donne ci-dessous le tableau de variation de la fonction f



- a) Montrer que l'équation f(x)=0 admet, dans IR_+ une seule solution α et vérifier que $0<\alpha<\frac{1}{2}$
- b) Tracer la droite Δ et la courbe σ (On précisera la demi tangente à σ au point d'abscisse 0 et on prendra $\alpha \simeq 0,4$)
- 3) On désigne par (U_n) la suite définie sur IN^* par $U_n = \int_a^1 |f(x)|^n dx$
 - a) Calculer U_1 . Interpréter graphiquement le résultat obtenu.
 - b) Montrer que pour tout entier naturel non nul $n, \ 0 \le U_n \le \frac{1}{n+1}$
 - c) En déduire la limite de la suite (U_n) .

Exercice 7

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{1+e^{-x}}$ et soit (C) sa courbe représentative.

- 1) a) Montrer que le point $\Omega(0, \frac{1}{2})$ est un centre de symétrie de (C).
 - b) Dresser le tableau de variation de f et tracer sa courbe (C).
- 2) a) Montrer que l'équation f(x) = x admet dans $\mathbb R$ une unique solution α et que $\frac{1}{2} < \alpha < 1$.
 - b) Vérifier que : $\alpha = \ln \left(\frac{\alpha}{1-\alpha} \right)$.
- 3) Pour tout entier naturel non nul, on pose $I_n = \int_0^{\alpha} \frac{e^{nx}}{(1+e^x)^n} dx$
 - a) Montrer que $I_1 = -ln(2(1-\alpha))$.
 - b) Vérifier que pour tout réel x, $f'(x) = f(x) (f(x))^2$
 - c) Montrer que : $\forall n \in \mathbb{N}^*$, on a : $I_{n+1} I_n = \frac{1}{n} \left(\frac{1}{2^n} \alpha^n \right)$.
 - d) Montrer que la suite (I_n) est décroissante et positive, que peut-on en déduire ?
- 4) a) Montrer que : $\forall n \in \mathbb{N}^*, \frac{\alpha}{2^n} \le I_- \le \alpha^{n+1}$

- 4) Soit (U_n) la suite définie sur \mathbb{N} par : $\begin{cases} U_0 = 2 \\ U_{n+1} = f^{-1}(U_n) \end{cases}$
 - a) Montrer que pour tout $n \in \mathbb{N}$ on $a: U_n > 1$.
 - b) Montrer que la suite (U_n) est strictement croissante.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.

Pour tout entier naturel non nul n, on considère la fonction f_n définie sur [0,1] par :

$$f_n(x) = e^{-x} - x^{2n+1}$$

- 1) Etudier les variations de f_n .
- 2) Montrer que pour tout entier naturel non nul n, l'équation $f_n(x)=0$ admet une unique solution U_n et que $U_n \in]0$, 1[.

On définie ainsi sur IN^* , une suite (U_n) .

3) a) Soit n un entier naturel non nul et x un réel de l'intervalle [0,1[.

Comparer les réels $f_{n+1}(x)$ et $f_n(x)$.

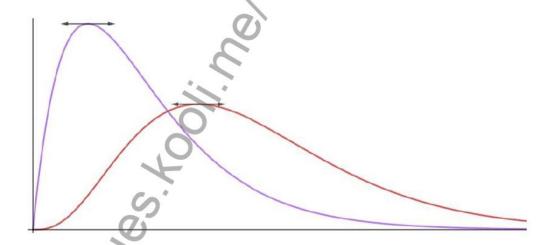
- b) Montrer que pour tout $n \in IN^*$, $f_n(U_{n+1}) < 0$.
- c) Montrer que la suite (U_n) est croissante et en déduire qu'elle est convergente.
- 4) a) Montrer que pour $n \ge 1$, $\ln(U_n) = -\frac{U_n}{2n+1}$
 - b) Calculer la limite de la suite (U_n) .

- 1) Soit f la fonction définie par $f(x) = \sqrt{e^x 1}$ et soit (C_f) sa courbe représentative.
 - a) Déterminer le domaine de définition de f.
 - b) Etudier la dérivabilité de f à droite en 0.
 - c) Dresser le tableau de variation de f.
 - d) Etudier la branche infinie de (C_f) .
- 2) a) Montrer que pour tout x > 0 on a : $f''(x) = \frac{1}{4} \times \frac{e^x(e^x-2)}{(e^x-1)\sqrt{e^x-1}}$
 - b) En déduire que (C_f) admet un point d'inflexion I dont on déterminera les coordonnées.
 - c) Ecrire une équation cartésienne de la tangente T à (C_f) au point I.
 - d) Tracer T et (C_f) .
- 3) Soit *u* la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $u(x) = \ln(1 + \tan^2 x)$.
 - a) Calculer que u'(x) pour tout $x \in \left[0, \frac{\pi}{2}\right]$.
 - b) Justifier que $u\left(\left[0,\frac{\pi}{2}\right]\right)=\left[0,+\infty\right[$.
- 4) Soit la fonction G définie sur $\left[0, \frac{\pi}{2}\right]$ par $: G(x) = \int_{0}^{\ln(1+tan^2x)} f(t) dt$.
 - a) Montrer que G est dérivable sur $\begin{bmatrix} 0 & \pi \end{bmatrix}$ et que pour tout $x \in \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}$ on $a : G'(x) = 2tan^2x$.

 soli Mohamed Hechmi

 BAC.MOURAJAA.COM

- 2) a) Montrer que pour tout $t \in [0, 1]$, on a : $\frac{1}{1+t} \le 1 \frac{t}{2}$.
 - b) Déduire que pour tout $x \in [0, 1]$, on $a : \ln(1 + x) \le x \frac{x^2}{4}$.
 - c) Prouver alors que pour $n \in \mathbb{N}^*$ on a : $\left(1 + \frac{1}{n}\right)^n \le e^{1 \frac{1}{4n}}$.
- 3) a) Montrer que pour tout $k \in \mathbb{N}^*$, on a : $\frac{U_{k+1}}{U_k} \le e^{-\frac{1}{4k}}$.
 - b) En déduire que pour $n \in \mathbb{N}^* \setminus \{1\}$, on a : $U_n \leq e^{-(1+\frac{1}{4}\sum_{k=1}^{n-1}\frac{1}{k})}$
- 4) a) Montrer que pour tout $k \in \mathbb{N}^*$, et $t \in [k, k+1]$ on $a : \frac{1}{t} \le \frac{1}{k}$.
 - b) En déduire que pour $n \in \mathbb{N}^* \setminus \{1\}$ on $a : \int_1^n \frac{dt}{t} \le \sum_{k=1}^{n-1} \frac{1}{k}$
 - c) Montrer alors que pour $n \in \mathbb{N}^* \setminus \{1\}$, on a : $U_n \leq e^{-1 \frac{1}{4} \ln(n)}$.
 - d) Déterminer alors la limite de suite (U_n) .



Soit la suite U définie sur \mathbb{N}^* par : $U_n = -\int_1^0 \frac{x}{n+e^x} dx$

- 1) a) Montrer que : $\forall n \in \mathbb{N}^*$ on a : $U_n \leq 0$.
 - b) Montrer que la suite U est monotone.
 - c) Montrer que : $\forall n \in \mathbb{N}^*$; $\forall x \in [0, 1]$ on a : $\frac{x}{n+3} \le \frac{x}{n+e^x} \le \frac{x}{n+1}$
 - d) En déduire que : $\forall n \in \mathbb{N}^*$ on a $\frac{-1}{2(n+1)} \leq U_n \leq \frac{-1}{2(n+3)}$.
 - e) Déterminer la limite de la suite U.
- 2) Soit la suite V définie sur \mathbb{N}^* par : $V_n = \sum_{k=1}^n |U_k|$
 - a) Montrer que $\forall k \in \mathbb{N}^*$ on $a : \int_k^{k+1} \frac{dt}{t} \le \frac{1}{k}$
 - b) En déduire que $\forall n \in \mathbb{N}^*$ on a : $\sum_{k=1}^{n+3} \frac{1}{k} \ge \ln(n+4) \ln 4$

b) En déduire une deuxième expression de G(x) pour tout $x \in \left[0, \frac{\pi}{2}\right]$.

c) Calculer alors \mathcal{A} la mesure de l'aire de la partie du plan limitée par la courbe (C_f) et les droites d'équations : y=0, x=0 et $x=\ln 2$.

Exercice 12

Soit f la fonction définie sur \mathbb{R} par $f(x) = (1+x)e^{-x}$ et soit (C_f) sa courbe représentative.

1) a) Dresser le tableau de variation de f.

b) Etudier les branches infinies de (C_f) .

c) Tracer (C_f) .

2) Soit la suite (V_n) définie sur \mathbb{N}^* par : $V_n = \int_0^n f(x) \ dx$.

a) Montrer que $\forall n \in \mathbb{N}^*, V_n = 2 - (n+2)e^{-n}$.

b) Calculer alors $\lim_{n\to+\infty}V_n$.

3) Pour tout $k \in \mathbb{N}^*$, on pose $U_k = \int_{k-1}^k f(x) \ dx$. Montrer que $\forall n \in \mathbb{N}^*$, $V_n = \sum_{k=1}^n U_k$.

a) Montrer que pour tout $k \in \mathbb{N}^*$, $U_n = (e-1)ke^{-k} + (e-2)e^{-k}$.

b) En déduire que $\forall n \in \mathbb{N}^*, V_n = (e-1)\sum_{k=1}^n ke^{-k} + \frac{e-2}{e-1}(1-e^{-n}).$

5) Soit $S_n = \sum_{k=1}^n ke^{-k}$, $\forall n \in \mathbb{N}^*$. Montrer que $\lim_{n \to +\infty} S_n = \frac{e}{(e-1)^2}$.

Exercice 13

I) Soit la fonction f définie sur $]-\infty$, 1[par $: f(x) = e^{-x} - ln (1-x) - 2$ et soit C_f sa courbe.

1) Soit u la fonction définie sur \mathbb{R} par : $u(x) = e^x + x - 1$.

a) Dresser le tableau de variation de u.

b) Calculer u(0) puis déduire le signe de u(x) sur \mathbb{R} .

2) a) Vérifier que pour tout x < 0, $f(x) = (x - 1) \left[\left(\frac{e^{-x}}{-x} \right) \left(1 - \frac{1}{1-x} \right) - \frac{\ln(1-x)}{1-x} \right] - 2$.

b) En déduire $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$ et interpréter le résultat graphiquement.

c) Vérifier que pour tout < 1, $f'(x) = \frac{e^{-x}u(x)}{1-x}$.

d) Dresser le tableau de variation de f.

2) On a tracé ci-dessous les courbes \mathcal{C}_h et \mathcal{C}_g des fonctions h et g définies par :

 $h(x) = e^{-x}$ et g(x) = ln(1-x) - 2.

 C_h et C_g se coupent en deux points d'abscisses respectives α et β tel que $\alpha < \beta$.

a) Justifier que α et β sont les seules solutions de l'équation f(x)=0 dans $]-\infty$, 1[.

b) Placer les points de C_f d'abscisses α et β .

c) Tracer C_f dans le même repère.

Exercice 14

- 1) Soit la fonction u définie sur IR par : $u(x) = e^x x$.
 - a) Déterminer $\lim_{x\to -\infty} u(x)$ et $\lim_{x\to +\infty} u(x)$
 - b) Dresser le tableau de variation de u.
 - c) En déduire que : $\forall x \in IR$, u(x) > 0.
- 2) Soit la fonction g définie sur IR par $g(x) = (2 x)e^x 1$.
 - a) Déterminer $\lim_{x \to -\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$
 - b) Dresser le tableau de variation de q.
- c) Montrer que l'équation g(x)=0 admet exactement deux solutions ; on notera par α la solution qui appartient à l'intervalle $]-\infty$, 1] et par β l'autre solution.
 - d) Fn déduire le signe de g(x) sur IR.
- 3) Soit la fonction f définie sur IR par : $f(x) = \frac{e^{x}-1}{e^{x}-x}$ on désigne par C_f sa courbe représentative.
 - a) Déterminer les limites de f en $-\infty$ et en $+\infty$.
 - b) Montrer que $f(\alpha) = \frac{1}{\alpha 1}$ et que $f(\beta) = \frac{1}{\beta 1}$.
 - c) Vérifier que $\forall x \in IR$ on a : $f'(x) = \frac{g(x)}{(e^x x)^2}$ et dresser le tableau de variation de f.
 - d) Tracer dans un repère orthonormé (unité graphique 2 cm) la courbe de f.

On prendra $\alpha = -1, 1$ et $\beta = 1, 8$.

4) Soit \mathcal{A} la mesure de l'aire de la partie du plan limitée par la courbe C_f l'axe des abscisses et les droites d'équations x = -1 et x = 1. Calculer \mathcal{A} .

Exercice 15

Soit f_n la fonction définie sur $[0,+\infty[$ par $:f_n(x)=rac{x^ne^{-x}}{n!}$ avec $n\in\mathbb{N}^*$.

Soit (C_n) la courbe de f_n dans le repère orthogonal (O, \vec{i}, \vec{j}) tel que $||\vec{i}|| = 1$ et $||\vec{j}|| = 10$.

A)

- 1) a) Dresser le tableau de variation de f_1 .
 - b) Pour tout $n \in \mathbb{N}^* \setminus \{1\}$, dresser le tableau de variation de f_n .
- 2) Pour tout $n \in \mathbb{N}^*$, étudier les positions relatives de (C_{n+1}) et (C_n) .
- 3) On a tracé ci-dessous les courbes (C_1) et (C_3) .
 - a) Sans justification, graduer le repère puis nommer sur le graphique les deux courbes.
- b) Tracer soigneusement la courbe (\mathcal{C}_2) ainsi que les demi-tangentes à l'origine pour chacune des trois courbes.
- **B)** On considère la suite (U_n) définie sur \mathbb{N}^* par : $U_n = f_n(n)$.
- f 1) a) En utilisant les résultats de la partie A) démontrer que (U_n) est décroissante sur $\mathbb{N}^*.$
 - b) La suite (U_n) est-elle convergente? Justifier la rénonse

- c) Montrer que l'équation f(x) = x admet une unique solution α et que $1 < \alpha < 2$
- d) Vérifier que $Ln(1+e^{-\alpha})=-[\alpha+Ln(\alpha-1)]$.
- 3) Construire C_f et $C_{f^{-1}}$.
- 4) Soit m un réel strictement supérieure à α et soit A(m) l'aire de la partie du plan limitée par C_f la droite d'équation y=1 et les droites d'équations $x=\alpha$ et x=m. Montrer que $A(m)=-In(1+e^{-m})-[\alpha+In(\alpha-1)]$ et en déduire $Iim\ A(m)$

Montrer que $A(m) = -Ln(1+e^{-m}) - [\alpha + Ln(\alpha-1)]$ et en déduire $\lim_{m \to +\infty} A(m)$.

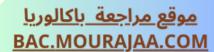
B) Soit
$$n \in \mathbb{N}^*$$
, on pose $g(t) = f(t) - 1$ et $I_n = \int_0^{\alpha} g^n(t) dt$.

- 1) Vérifier que $I_1 = \alpha + Ln[2(\alpha 1)]$.
- 2) a) Montrer que pour tout $x \in \mathbb{R}$, on a : $g'(x) = g^2(x) g(x)$.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $I_{n+1} I_n = \frac{1}{n} \left[(\alpha 1)^n \frac{1}{2^n} \right]$.
 - c) En déduire que pour tout $n \ge 2$ on a : $I_n = \alpha + Ln[2(\alpha 1)] + \sum_{k=1}^{n-1} \frac{1}{k} (\alpha 1)^k \frac{1}{2^k}$
- 3) a) Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le I_n \le \frac{\alpha}{2^n}$
 - b) En déduire $\lim_{n\to+\infty} I_n$ puis $\lim_{n\to+\infty} \sum_{k=1}^{n-1} \frac{1}{k} (\alpha-1)^k \frac{1}{2^k}$
- 4) Soit $S_n = \sum_{k=1}^n I_k$; $n \in \mathbb{N}^*$
 - a) Montrer que pour tout $n \in \mathbb{N}^*$ on a : $g(t) + g^2(t) + \cdots + g^n(t) = e^{-t} \frac{g^{n+1}(t)}{1-g(t)}$
 - b) En déduire que $\forall n \in \mathbb{N}^*$; $S_n = 1 e^{-\alpha} \int_0^\alpha \frac{g^{n+1}(t)}{1 g(t)} dt$
 - c) Montrer que $\forall n \in \mathbb{N}^*$:
- $0 \leq \int_0^\alpha \frac{g^{n+1}(t)}{1-g(t)} \, dt \leq 2I_{n+1} \ \text{ en déduire } \lim_{n \to +\infty} \int_0^\alpha \frac{g^{n+1}(t)}{1-g(t)} \, dt$
 - d) Calculer alors $\lim_{n\to+\infty} S_n$.

Exercice 23

Soit f la fonction définie sur]0 , $+\infty[$ par $:f(x)=\frac{1}{\sqrt{e^{2x}-1}}$ et soit C_f sa courbe représentative

- 1) a) Dresser le tableau de variation de f.
- **b)** En déduire que pour tout $x \ge \frac{\ln 2}{2}$ on $a: 0 < f(x) \le 1$
 - c) Tracer C_f .



- c) En déduire que $\forall n \in \mathbb{N}^*$ on a : $V_n \ge \frac{1}{2}[\ln(n+4) \ln 4]$
- d) Déterminer alors la limite de la suite V.

- 1) Soit g la fonction définie sur $\mathbb R$ par $g(x)=e^{1-x}$ et soit $\left({\it C}_g\right)$ sa courbe représentative.
 - a) Dresser le tableau de variation de g.
 - b) Etudier les branches infinies de (Γ) .
- 2) Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{1-x}$ et soit (C_f) sa courbe représentative.
 - a) Calculer $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$ interpréter les résultats graphiquement.
 - b) Dresser le tableau de variation de f.
 - c) Etudier la position relative de (C_g) et (C_f) .
 - d) Tracer (C_g) et (C_f) dans le même repère.
- 3) Soit x un réel de l'intervalle $[1, +\infty[$ et les points M et N d'abscisse x tel que $M \in (C_f)$ et $N \in (\Gamma)$.
 - a) Calculer la distance MN en fonction de x.
 - b) Déterminer la valeur de x pour laquelle la distance MN est maximale.
- 4) a) Calculer S(t) la mesure de l'aire de la partie du plan limitée par les courbes (C_f) et (Γ) et les droites d'équations x=1 et x=t tel que t un réel de l'intervalle $[1,+\infty[$.
 - **b)** Calculer $\lim_{t\to+\infty} S(t)$.
- 5) Soit (U_n) la suite définie sur \mathbb{N}^* par : $U_n = \int_1^2 (x-1)^n e^{1-x} dx$
 - a) Calculer U_1 .
 - b) Montrer que la suite (U_n) est décroissante et qu'elle est convergente.
- 6) a) A l'aide d'une intégration par parties, montrer que pour tout $n \in \mathbb{N}^*$ on a :

$$U_{n+1} = -\frac{1}{e} + (n+1)U_n$$

- b) Calculer U_2 et U_3 .
- c) En déduire $l = \int_{1}^{2} (x^3 3x^2 + 2)e^{1-x} dx$

- 1) Soit la fonction g définie sur IR par $g(x) = 1 + xe^x$.
 - a) Etudier les variations de g sur IR.
 - b) En déduire le signe de g(x) sur IR.
- 2) Soit f la fonction définie sur IR par $f(x) = x + e^x(x 1)$. On désigne par C_f
 - a) Etudier les variations de f sur IR.
 - b) Montrer que la droite D: y = x est une asymptote à \mathcal{C} au voisinage de $-\infty$.
 - c) Etudier la position de C_f par rapport à la droite D.

