\* Lycée Pilote Bourguiba Tunis \*

♣ 4<sup>éme</sup> Maths

Le 03/12/2021 \* Durée 3 heures

Devoir de synthèse Nº1

Prof : Mme Gara - Mrs Masmoudi et Ben Regaya

## do

### Exercice 1:3 points

Le plan complexe est muni d'un repère orothonormé direct  $(0, \vec{u}, \vec{v})$ .  $\theta \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$ .

- Résoudre dans  $\mathbb{C}$  l'équation :  $(1+i)z^2 2(\cos\theta \sin\theta)z + 1 i = 0$ . On écrira les solutions sous forme exponentielle.
- Soit f l'isométrie qui à tout point M(x,y) associe le point M'(x',y') tel que :  $\begin{cases} x' &= -y \\ y' &= -x \end{cases}$ 
  - (a) Montrer que  $f = r_{(O; \frac{-\pi}{2})} \circ S_{(O; \vec{u})}$ .
  - f b En déduire que f est une symétrie orthogonale dont on précisera l'axe.
- On donne les points  $M_1\left(e^{i\theta}\right)$  et  $M_2\left(e^{-i\left(\theta+\frac{\pi}{2}\right)}\right)$ .
  - (a) Déterminer l'ensemble des points  $M_1$ .
  - (b) En déduire l'ensemble des points  $M_2$ .

# Exercice 2:5 points

OAB est un triangle rectangle en O inscrit dans un cercle  $\zeta$  de centre I tel que :

 $(\overrightarrow{BO},\overrightarrow{BA}) \equiv \frac{\pi}{3}[2\pi]$ . On note C le milieu de [OA]. La droite (IC) coupe  $\zeta$  en D et E tel que  $E \in \widehat{AB}$ .

- 1 Montrer que IEB est un triangle équilatéral.
- Soit R la rotation de centre A et d'angle  $\frac{\pi}{3}$  et  $g = S_{(IB)} \circ S_{(ED)}$ 
  - (a) Caractériser g.
  - **b** Déterminer  $R \circ g(A)$ . En déduire que  $R \circ g = S_C$ .
  - $\bigcirc$  Montrer que R(I) = D. En déduire que C est le milieu de [ID]
- (3) (a) Montrer qu'il existe un unique déplacement f qui transforme D en B et O en E.
  - **(b)** Soit  $h = t_{\overrightarrow{BD}} \circ f$ . Déterminer h(D) et h(O) puis caractériser h.





- c Déterminer les droites  $\Delta$  et  $\Delta'$  telles que :  $h = S_{(AD)} \circ S_{\Delta}$  et  $t_{\overrightarrow{DB}} = S_{\Delta'} \circ S_{(AD)}$ 
  - d Caractériser alors f.
- (4) (a) Montrer qu'il existe un unique antidéplacement k qui envoie D sur B et O sur E.
  - **b** On pose  $\varphi = t_{\overrightarrow{BD}} \circ k$ . Montrer que  $\varphi$  est une symétrie orthogonale dont on précisera l'axe.
  - c Montrer que k est une symétrie glissante dont on donnera la forme réduite.

#### Exercice 3:5 points

Soit f la fonction définie sur  $[0, \pi[$  par  $: f(x) = \frac{cosx}{1 + cosx}]$ 

- (a) Montrer que f réalise une bijection de  $[0,\pi[$  sur un intervalle J que l'on précisera.
  - **b** Étudier la dérivabilité de  $f^{-1}$  et calculer sa dérivée lorsqu'elle existe.
  - C Montrer que pour tout  $x \in \left[0, \frac{\pi}{6}\right], |f'(x)| \le \frac{1}{2}$ .
- Montrer que l'équation f(x) = x admet une solution unique  $\alpha$  et que  $\alpha \in \left[0, \frac{\pi}{6}\right]$ .
- 3 On considère la suite définie par :  $u_0 = \frac{\pi}{6}$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$  et on pose  $S_n = \frac{1}{n+1} \sum_{k=0}^{\infty} u_k.$ 
  - (a) Montrer que pour tout  $n \in \mathbb{N}$ ,  $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$ .
  - **b** En déduire que pour tout  $n \in \mathbb{N}$ ,  $|u_n \alpha| \le \left(\frac{1}{2}\right)^n$ .
  - $\bigcirc$  Déterminer la limite de la suite  $(u_n)$ .
  - d Montrer que pour tout  $n \in \mathbb{N}$ ,  $\alpha \frac{2}{n+1} \le S_n \le \alpha + \frac{2}{n+1}$ . En déduire la limite de la suite  $(S_n)$ .

## Exercice 4:7 points

Soit f la fonction définie sur [-1,1] par  $f(x) = \frac{x}{1+\sqrt{1-x^4}}$ . On note  $\zeta$  la courbe de f dans un repère orthonormé  $(O, \overrightarrow{i}, \overrightarrow{j})$ .

- (a) Étudier la dérivabilité de f à droite en (-1) et à gauche en 1.
  - (b) Dresser le tableau de variation de f.
  - $\bigcirc$  Étudier la position relative de  $\zeta$  par rapport à la droite  $\Delta: y = x$
  - d Montrer que f réalise une bijection de [-1,1] sur lui même.
  - (e) On note  $\zeta'$  la courbe de  $f^{-1}$ . Tracer  $\zeta$  et  $\zeta'$ .
- Pour  $n \in \mathbb{N}^*$ , on note  $f_1 = f$  et pour  $n \ge 2$ ,  $f_n = f \circ f \circ ... \circ f$  (n fois). Soit g une fonction définie et continue sur [0,1] et telle que :



- $g([0,1]) \subset [0,1]$ .
- Il existe  $a \in ]0,1[$  tel que g(a) = a.
- Pour tout  $x \in [0,1]$ ,  $f \circ g(x) = g \circ f(x)$ .

Soit la suite  $(u_n)$  définie par :  $u_n = f_n(a)$ .

- (a) Montrer que g(0) = 0 ou g(0) = 1.
- **b** Montrer que pour tout  $n \in \mathbb{N}^*$ ,  $g(u_n) = u_n$  et  $u_{n+1} = f(u_n)$ .
- $\bigcirc$  Étudier la monotonie de la suite  $(u_n)$ . En déduire que  $(u_n)$  converge et calculer sa limite.
- d Déterminer g(0).
- Soit h la fonction définie sur  $[0, \pi]$  par :  $h(x) = f(\sqrt{\sin x})$ .
  - (a) Montrer que la droite d'équation :  $x = \frac{\pi}{2}$  est un axe de symétrie pour la courbe  $\Gamma$  de h.
  - **b** Étudier les variations de h puis tracer  $\Gamma$  dans un autre repère.